Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 17, 2026
- 
            Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO3 thin filmsAbstract Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO 3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO 3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO 6 octahedral rotations throughout LaCoO 3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3 d -O 2 p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO 3 films while suggesting potential applications toward low-power spintronic devices.more » « less
- 
            SrTiO 3 (STO) is an incipient ferroelectric perovskite oxide for which the onset of ferroelectric order is suppressed by quantum fluctuations. This property results in a very large increase in static dielectric constant from ∼300 at room temperature to ∼20,000 at liquid He temperature in bulk single crystals. However, the low-temperature dielectric constant of epitaxial STO films is typically a few hundred to a few thousand. Here, we use all-epitaxial capacitors of the form n -STO/undoped STO/ n -STO (001) prepared by hybrid molecular beam epitaxy, to demonstrate intrinsic dielectric constants of an unstrained STO (001) film exceeding 25,000. We show that the n -STO/undoped STO interface plays a critically important role not previously considered in determining the dielectric properties that must be properly accounted for to determine the intrinsic dielectric constant.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
